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Cost-effectiveness analysis is an important 
input into resource allocation decisions in many 
health contexts and systems but seems to be 
used less frequently for decision making at 
meso- or micro-levels. One reason for this limited 
uptake may be the conventional decision rules 
of cost-effectiveness make some assumptions 
that are unrealistic for typical decisions made 
at these levels. Specifically, cost-effectiveness 
analysis assumes that programs are perfectly 
divisible, that there are constant returns to scale, 
that treatment options are independent, and that 
other considerations are irrelevant. Constrained 
optimization is an alternative method for 
performing economic evaluation that can guide 
selection of an optimal portfolio of programs 
with the constraint of a fixed budget and can 
address programs that are indivisible, introduce 

interactions between programs, and address 
additional constraints and objectives, including 
some equity concerns. Constrained optimization 
may be most relevant for a decision maker with a 
fixed budget who must decide which programs to 
fund or exclude within that constraint. We provide 
a hypothetical example and illustrate how the 
optimal selection of programs that a decision 
maker would fund depends on assumptions, 
objectives, and constraints. For some decision 
makers, such as directors of regional authorities 
or program managers, who often encounter such 
scenarios, the constrained optimization approach 
may offer more informed guidance for resource 
allocation decision problems compared with 
conventional cost-effectiveness analysis, provided 
that decision makers can articulate well-defined 
objectives and constraints.

Abstract
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Economic evaluation within health care

Resource allocation frequently requires 
simultaneous consideration of multiple 
outcomes. Within health care, these outcomes 
commonly include costs, health, and sometimes 
additional considerations such as equity. Cost 
is usually viewed as a constraint whereas health 
is typically viewed as an objective. Equity and 
other considerations are sometimes viewed as 
constraints and sometimes as objectives, which 
we will address further below. Health is often 
measured by integrating survival with quality 
of life in the form of a quality-adjusted life year 
(QALY).1

Economic evaluation is the formal process of 
comparing costs to outcomes and is commonly 
performed by expressing the trade-off as a ratio 
(in cost-effectiveness analysis) or as a difference 
(in cost-benefit analysis).2 In cost-effectiveness 
analysis, the health effects may be measured in 
natural units (such as life years or as number of 
infections averted) or in QALYs, in which case the 
economic analysis is often termed a cost-utility 
analysis. In cost-benefit analysis, health effects 
are monetized (assigned a dollar value). Although 
both cost-effectiveness and cost-benefit analyses 
have strong arguments in their favour, the large 
majority of economic evaluations in health care 
use the methods of cost-effectiveness analysis. 
In this report, we similarly direct our main focus 
for conventional analyses on the methods of 
cost-effectiveness analysis.

The limitations of cost-effectiveness 
analysis

While cost-effectiveness analysis has proven to 
be a powerful method for assessing the efficiency 
of competing interventions within health care, the 
method has significant limitations that restrict its 
usefulness for guiding decisions when resources 
are being allocated within the context of fixed 
budgets for indivisible programs or when decision 
makers are considering multiple objectives 
alongside health. An indivisible program is one 
that can only be funded in its entirety or not at 
all; perfectly divisible programs can be funded 
in whole or in part, such as to specific portions 
of the population.2 Stated more formally, cost-

effectiveness analysis assumes that programs are 
perfectly divisible, that there are constant returns 
to scale (the ratio of costs to effects is constant, 
even if the program is only partially implemented), 
that treatment options are independent (the 
costs and effects gained by one program do 
not influence the costs and effects of another 
program), and that externalities are irrelevant (the 
costs and effects are the only considerations).3,4 
In practice, none of these assumptions are likely 
to be true. While several authors have illustrated 
how constrained optimization using mathematical 
programming can address such limitations, there 
has been limited uptake of such methods.4-6 In this 
paper, we illustrate, using simple examples, how 
constrained optimization using mathematical 
programming can address concerns regarding 
indivisibility, independence, and considerations 
outside of health.

The decision rules of cost-effectiveness 
analysis

The decision rules of cost-effectiveness 
have generally been stated in two ways. The 
first formulation of the decision rule of cost-
effectiveness analysis is to “maximize the health 
effects gained for each additional dollar spent, 
without exceeding a given threshold.” This rule 
can be written using mathematical notation, in 
which intervention Y is preferred over intervention 
X if:

where CY and CX represent the costs of program 
Y and X, respectively, EY and EX represent 
the health effects of program Y and X, and λ 
represents the willingness-to-pay threshold. In 
this formulation, the decision about whether a 
cost-effectiveness analysis ratio is favourable 
or not only makes sense in reference to a 
standard, λ, which is the maximum amount that 
a decision maker would be willing to spend to 
buy an extra unit of effectiveness. When the 
perspective is that of a decision maker who is 
using a societal perspective (considering all cost 
and outcomes without regard to who is incurring 
them), λ is often called the “societal willingness-
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to-pay threshold.” Several different methods for 
determining the value of λ have been discussed 
and are beyond the scope of this paper.7 A 
frequently cited (although contested) threshold in 
Canada is $50,000/QALY.8 

The second formulation of the decision rule 
of cost-effectiveness analysis is to “maximize 
the health effects gained without exceeding a 
given budget.” This rule can be written using 
mathematical notation, following Stinnett and 
Paltiel,4 as:

where xi represents the proportion of program i 
that is implemented, ei and ci represent the health 
effects and costs of each program, C represents 
the total budget, and M represents the set of 
mutually exclusive programs under consideration. 
In plain language, this approach assumes that 
the decision maker is attempting to maximize 
the health effects by allocating resources 
across programs (line 1), while specifying that 
that programs can be implemented either fully 
or partially (line 2), that the total cost across 
programs cannot exceed the global budget 
(line 3), and that the sum of the portions across 
programs cannot be greater than 100% (line 4). 

Note that this approach does not assume 
an external cost-effectiveness threshold (λ). 
However, the value of λ can be inferred from 
examining the effects gained relative to the 
cost of the last program funded under the 
budget constraint, termed the “shadow price.” 
The reciprocal of the shadow price is the cost-
effectiveness threshold.3 

Opportunity costs

Central to the decision rule of cost-effectiveness 
analysis is the concept of opportunity cost, which 
states that decision makers should focus not 
only on the health effects gained from a given 
investment but also the health effects foregone 

by not investing in an alternative. This cost is 
implicit in the incorporation of λ into the cost-
effectiveness decision rule. For example, consider 
a new drug for a condition that has an incremental 
cost-effectiveness ratio, compared with an 
existing drug, of $100,000/QALY. Applying the 
first formulation of the rule of cost-effectiveness 
analysis would indicate that a decision maker 
using a threshold value of $50,000/QALY (i.e. 
λ=$50,000/QALY) should not invest in the new 
drug since it exceeds the threshold or, stated 
another way, the extra dollars that are being 
proposed to “buy” better health for this drug 
could be better spent on an alternative (although 
unspecified) investment which is lower than the 
threshold and therefore represents better value 
for money. Stated yet another way, the opportunity 
cost of investing in the new drug is too high. In this 
paper, we will discuss opportunity “costs” primarily 
in terms of QALYs forgone; that is, decision makers 
may adopt certain rules that maximize specified 
objectives but that nevertheless lead to a lower 
aggregate number of QALYs gained. Making this 
trade-off explicit may be instructive for decision 
makers as a check on whether a specified 
objective is actually desirable.

Mathematical programming, con-
strained optimization, and portfolio 
optimization

The second formulation of the cost-effectiveness 
decision rule has been considered in the 
literature as a problem that can be addressed 
by mathematical programming, constrained 
optimization, or portfolio optimization.3,4,9 
Mathematical programming refers to construction 
of a problem in terms of mathematical objectives 
and constraints and the definition of a set of 
decision variables which are varied to meet the 
objective.10 Mathematical programs frequently 
do not have simple algebraic solutions. Instead, 
solutions are found iteratively using search 
algorithms. These programs are commonly linear 
or quadratic, reflecting the terms in the objective 
function. Inputs may be integers, real numbers, 
or a mixture. In this paper, we restrict ourselves 
to linear programs and explore both real numbers 
and integers (restricted to 0 and 1) for certain 
input parameters. While programming and 
optimization are frequently used as synonyms, 
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in this paper, we use constrained optimization to 
refer to the process of finding the best possible 
solution for a given mathematical program. 
More specifically, it is a systematic approach 
to finding the optimal value (i.e. minimum or 
maximum) of all possible solutions for a set of 
decision choices that are subject to well-defined 
preconditions. Constrained optimization has three 
components: 1) setting the objective (the problem 
that is to be solved); 2) defining the decision 
variables (the choices within the problem); and 3) 
establishing constraints (i.e. decision rules, such 
as budgetary or equity requirements, within which 
the solution of the problem should be found).9 
Portfolio optimization refers to a specific form 
of constrained optimization, in which a decision 
maker is selecting among several discrete options 
to maximize an objective.

In this paper, we adopt the perspective of a 
manager who is seeking to maximize the number 
of QALYs gained within a fixed budget and is 
choosing from a portfolio of possible programs. 
She is constrained by her budget cap rather 
than by the constraint of meeting a pre-defined 
willingness-to-pay threshold. Such scenarios may 
be most relevant to a director or manager in a 
Ministry of Health, for example, who is assigned 
a fixed budget and must decide which programs 
to fund or exclude within that constraint. To the 
extent that such circumstances mirror the real-life 

choices that decision makers face, understanding 
the limitations of cost-effectiveness analysis 
and the benefits and limitations of a constrained 
optimization approach could guide decision 
makers more effectively when selecting the 
methods that best address their resource 
allocation decision problems. We will take 
a primarily non-mathematical approach to 
explaining examples. Interested readers are 
invited to view details of the code used to 
generate all examples and the corresponding 
output in the Appendix. Examples were 
completed using Gurobi version 8.1.1 and Python 
version 3.7.2.

A hypothetical motivating example

Throughout this paper, we will use the following 
hypothetical example. Consider a manager who 
has a budget of $900,000 to allocate between 10 
possible programs. The total cost of all potential 
programs is $2,850,000. Accordingly, the decision 
maker must select a portfolio of programs to 
fund and other programs to forego. Assume 
further that the programs differ in terms of their 
effectiveness (which is measured in QALYs) and 
their costs, that the programs are distributed 
among 5 sub-regions, that some programs target 
youth while other target adults, and that some 
programs vary in terms of their priority for the 
decision maker (this may represent an equity or 
fairness consideration, for example).  Priority is 

Table 1. Features of hypothetical programs for the motivating example 

Program Sub-region Target 
audience

Effectiveness
(QALYs gained)

Cost Priority

A 1 Youth 3.0 $450,000 High

B 1 Adult 2.0 $85,000 Medium

C 2 Adult 6.3 $515,000 Low

D 2 Youth 4.2 $145,000 High

E 2 Adult 1.3 $30,000 Medium

F 3 Adult 6.0 $310,000 Low

G 4 Adult 2.1 $240,000 High

H 4 Youth 2.8 $114,000 Medium

I 5 Youth 4.5 $640,000 Low

J 5 Youth 1.7 $321,000 High

Total 33.9 $2,850,000
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categorized into 3 levels (High, Medium, and Low). 
The programs, labelled A to J, are summarized 
in Table 1. We also assume that there are no 
existing programs; that is, the status quo consists 
of zero costs and no QALYs. To begin, we assume 
that the programs are independent of each other; 
that is, the implementation of any program has no 
effect on the costs or QALYs of another program 
(we explore a scenario where program outcomes 
are dependent on each other below).

Decision rule 1: conventional cost-
effectiveness analysis
Objective Maximize QALYs
Constraint Total cost cannot exceed the  
   global budget

We first analyze our example using conventional 
rules of cost-effectiveness analysis. That is, we 
are aiming to maximize QALYs under a budget 
constraint. Note that our programs are mutually 
exclusive at the individual level (someone 
enrolled in one program cannot be enrolled in 
another) but not at the aggregate level; that 
is, our objective is not to determine the single 
most attractive program to fund (if that was our 
objective, we would calculate the incremental 
cost-effectiveness of each program in sequence, 
define the cost-effectiveness frontier, and select 
the intervention that is on the frontier which both 
buys the greatest number of QALYs and has an 
incremental cost-effectiveness ratio less than λ. 

Because our objective is, instead, to determine the 
optimal portfolio of programs to fund, we are not 
concerned with incremental cost-effectiveness 
ratios).

A decision maker who is interested in maximizing 
QALYs would first invest in the program that yields 
the greatest number of QALYs per dollar spent 
– that is, the most efficient program. She would 
then continue to invest in programs or portions 
of programs until she has exhausted her global 
budget. In our example, the order of programs 
is determined by calculating the cost per QALY 
gained (Column 5 of Table 2) and then ranking 
the programs from lowest to highest according to 
this calculation.

Under a total budget of $900,000, programs E, 
D, H, B, and F are fully implemented. However, 
there are insufficient funds to fully implement 
Program C. Because we are using the decision 
rules of cost-effectiveness, we will make two 
assumptions. First, we assume that program C is 
divisible; that is, the program manager can direct 
that program C be only partially implemented 
(in this case, 42% of the total funds required for 
Program C should be allocated). We are also 
assuming that 42% of the benefits of Program 
C are realized. Accordingly the decision rule of 
cost-effectiveness will involve an expenditure of 
the entire budget of $900,000 and a gain of 18.94 
QALYs. Note that this is the maximum number 

Table 2. Programs sorted by cost-effectiveness

Rank Program QALY Cost Cost/QALY Cumulative 
Budget

Cumulative 
QALYS

Proportion of 
Program Funded

1 E 1.3 $30,000 $23,077 $30,000 1.30 100%

2 D 4.2 $145,000 $34,524 $175,000 5.50 100%

3 H 2.8 $114,000 $40,714 $289,000 8.30 100%

4 B 2.0 $85,000 $42,500 $374,000 10.30 100%

5 F 6.0 $310,000 $51,667 $684,000 16.30 100%

6 C 6.3 $515,000 $81,746 $900,000 18.94 42%

7 G 2.1 $240,000 $114,286 0%

8 I 4.5 $640,000 $142,222 0%

9 A 3 $450,000 $150,000 0%

10 J 1.7 $321,000 $188,824 0%
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of QALYs that can be gained when allocating 
resources across these programs. 

We return to the two important assumptions. 
First, that Program C is divisible and second, 
that funding Program C at 42% will also yield 
42% of the benefits; that is, we are assuming 
that Program C yields constant returns to scale. 
In practice, both of these assumptions may be 
problematic. Assumptions of divisibility and 
constant returns to scale may be particularly 
inappropriate, for example, for programs that 
have large fixed, relative to variable, costs. 
Furthermore, programs that hire staff on salaries 
(rather than on a contractual basis) may similarly 
be indivisible. The question of constant return to 
scale becomes moot if we assume indivisibility 
(since there is only one scale). 

The last program funded in this approach has 
a cost-effectiveness ratio of $81,746, which 
represents the threshold value for this portfolio 
of programs. Note, however, that this value may 
be higher than the societal willingness-to-pay 
threshold. If, for example, our societal value of λ 
is $50,000/QALY, we might impose a constraint 
that no program with a cost-effectiveness ratio 
greater than this should be funded. The rationale 
for a decision rule such as this is that money 
spent on these programs would be optimally 
reinvested on other portfolios outside of this 
funding platform; that is, the opportunity costs 
of investing with this program are too high 
given competing demands in other portfolios, 
sectors, or ministries. Of course, it is uncertain 
whether such reinvestments would be made in 
practice. Imposing a further restriction to only 
fund programs that have a cost-effectiveness 
ratio below $50,000/QALY, programs E, D, H, and 
B would be funded and the total budget invested 
would be $374,000 (the program manager would 
need to return $526,000 to be invested by other 
managers). Although consideration of efficiency 
at a societal level is an important consideration, 
we leave it aside for the remainder of this paper 
and focus solely on maximizing objectives within 
a portfolio of programs.

Decision rule 2: constrained optimization 
with indivisible programs 
Objective Maximize QALYs
Constraint Total cost cannot exceed the  
  global budget
  Funding variables are binary 

Next, we examine how the resource allocation 
decision changes under the assumption that 
the programs are indivisible. Our objectives are 
similar to those under Decision Rule 1: We wish 
to maximize the number of QALYs subject to a 
budget constraint. However, we also now have an 
additional constraint, namely that each program 
is either funded or it is not funded; no program 
can be only partially funded. 

Under this decision rule, programs B, D, F, G 
and H are funded. The total cost of funding all 
programs is $894,000 – note that the remaining 
$6000 cannot be spent since programs are 
indivisible and no program costs less than 
$6000. In practice, this $6000 might be spent 
on other programs; however, the only relevant 
consideration for this example is that it is not 
invested within this portfolio. Note that program 
E, which was the most cost-effective program 
under Decision Rule 1, is no longer funded. 
Although program E represents an efficient use 
of resources, it also has a small overall cost. 
Once we are constrained to considering how 
to maximize QALY gains across 10 indivisible 
programs, we must consider both costs and 
budgets. In this example, the optimal solution, 
perhaps surprisingly, excludes the single most 
cost-effective program (under a different budget 
constraint, program E would be included again).

The total QALY gain under Decision Rule 2 is 
17.10 QALYs, which is lower than the theoretical 
maximum number of QALYs (18.94) that could be 
gained under Decision Rule 1. However, because 
there is no change in the objective (our goal is 
still to maximize QALYs), we do not consider 
this a QALY loss. Rather, we consider this an 
assessment of how many QALYs can be gained 
under more realistic circumstances. Accordingly, 
we will use this gain (17.10) as the benchmark 
QALY measure to calculate the number of QALYs 
foregone under different objective functions.
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Decision rule 3: constrained optimization 
with regional equity
Objective Maximize QALYs
Constraint Total cost cannot exceed the  
  global budget
  Funding variables are binary 
  Each region has 1 or more  
  programs

Our third decision rule assumes that our decision 
maker wishes to ensure that there is at least 
one program funded in each region. This may be 
seen as a form of horizontal equity, if people in 
different regions have similar health needs for 
the programs. Recall that Region 3 has only one 
program, program F; hence, this rule guarantees 
that program F will be funded. Each of the other 
regions has 2 or 3 programs. We continue with a 
model that analyzes programs as indivisible with 
a global budget constraint and with an objective 
of QALY maximization.

With these constraints, the programs that 
maximize the number of QALYs gained are B, E, 
F, H, and J. The total expenditure is $860,000 and 
the number of QALYs gained is 13.80. Recall that 
Decision Rule 2 yielded 17.10 QALYs; thus, there 
is a “cost” of 3.30 QALYs in order to meet the 
regional equity objective. In other words, there is 
a trade-off here between efficiency (maximizing 
QALYs) and horizontal equity (making sure each 
region gets a program). Our decision maker would 
need to decide whether the opportunity cost (a 
19% loss in the number of QALYs that could be 
gained) is acceptable or not. 

Decision rule 4: constrained optimization 
with at least 3 youth services
Objective Maximize QALYs
Constraint Total cost cannot exceed the  
  global budget
  Funding variables are binary 
  Fund at least 3 youth programs

Our fourth decision rule assumes that our 
decision maker wishes to ensure that at least 
three youth programs are funded. This may be an 
equity concern (for example if youth are perceived 
to be at higher need for services than adults) but 
it could also be a constraint that is motived by 

considerations other than equity, such as political 
demands. As before, we continue with a model 
that analyzes programs as indivisible with a 
global budget constraint and with an objective of 
QALY maximization.

With these constraints, the programs that 
maximize the number of QALYs gained are D, F, H, 
and J. In contrast to each of our previous decision 
rules, only 4 programs are funded rather than 5; 
of these 4, only one is a program for adults. The 
total expenditure is $890,000 and the number of 
QALYs gained is 14.70. Compared to Decision 
Rule 2, 2.40 QALYs are foregone in order to meet 
this objective. 

What happens if we attempt to combine Decision 
Rules 3 and 4 – that is, if we impose a constraint 
that each region must have at least one program 
funded and that at least 3 youth programs 
must be funded? No solution is possible for this 
scenario, illustrating that it is possible to impose 
too many constraints and create “impossible” 
scenarios.

Decision rule 5: constrained optimization 
with weighted QALYs
Objective Maximize weighted QALYs
Constraints  Total cost cannot exceed the  
  global budget
  Funding variables are binary 
Comment  Weights for low, moderate and  
  high programs are 1.0, 1.2, and  
  1.6

So far, our decision rules have conceptualized 
decision maker concerns other than QALY 
maximization as constraints. However, it is 
also possible to consider such concerns within 
the objective function. To illustrate, our fifth 
decision rule assumes that our decision maker 
has greater priority for some programs rather 
than others. If this prioritization reflected levels 
of need, this would be an example of vertical 
equity (prioritizing QALY gains according to level 
of need). We assume that moderate priority 
programs are valued more highly than low priority 
programs, with QALYs gained by such programs 
given a 20% increased weight (a relative weight 
of 1.20). We similarly assume that high priority 
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programs are assigned a weight of 1.60. Note 
that weighting the gain in QALYs by a factor, w, 
is conceptually and algebraically equivalent to 
saying that the willingness to pay for a QALY 
is higher by the same factor (to see this, recall 
that an intervention is cost-effective if ΔC/ ΔE < 
λ, or equivalently ΔC-λ ΔE < 0. Substituting the 
weighted QALY gain, w ΔE, changes this equation 
to ΔC- λ w ΔE < 0, which is the same equation as 
if we had substituted the weighted willingness 
to pay threshold, w λ,  for λ). Our model analyzes 
programs as indivisible with a global budget 
constraint and with an objective of weighted QALY 
maximization.

With these constraints, the programs that 
maximize the number of QALYs gained are B, C, 
D, E, and H. The total expenditure is $889,000 
and the number of unweighted QALYs gained 
is 16.60. Compared to Decision Rule 2, 0.50 
unweighted QALYs are foregone in order to meet 
this objective.

Decision rule 6: constrained optimization 
with programs that are not independent
Objective Maximize QALYs
Constraints  Total cost cannot exceed the  
  global budget
  Funding variables are binary 
Comment  Interaction between programs A  
  and B: increase of 1.0 QALYs and  
  decrease of $200,000

Recall that an additional assumption of the 
decision rules of cost-effectiveness is that 
programs are independent. Our constrained 
optimization approach can also be used to 
explore how to relax such assumptions. Consider, 
for example, programs A and B, both of which 
are in the same region but one of which targets 
youth and the other targets adults. Perhaps 
the programs are offered by the same agency, 
such that funding both enables families to 
be treated together and that treating families 
results in additional QALY gains beyond treating 

family members individually. We might therefore 
assume that the QALY gains from funding 
programs A and B together are greater than the 
sum of funding either program independently. 
In our example, we assume that there is an 
additional gain of 1.0 QALYs if both programs are 
funded. We might similarly assume that funding 
both programs might be less expensive than the 
sum of the cost of each program because of 
economies of scale. We assume that there are 
cost savings of $200,000 from such an approach. 
We include these effects as “interaction” terms 
in the objective and constraint functions. In this 
scenario, programs A, B, D, E, and F are funded. 
The expenditure is $820,000 and the total number 
of QALYs gained is 17.50. We do not calculate a 
QALY loss in this scenario since it is not directly 
comparable to other decision rules.

Summary

Table 3 summarizes the scenarios according to 
the decision rules, the programs that are funded 
under each rule, the total expenditure, the total 
number of QALYs across funded programs, 
and, when relevant, the QALY loss relative to the 
maximum possible number of QALYs gained if 
indivisible programs were funded solely with the 
objective of maximizing QALYs.

Several points are noteworthy. First, the optimal 
portfolio varies considerably according to the 
assumptions, constraints, and objectives that 
are selected. In our hypothetical example, no 
program is always selected although one (program 
I) is never selected. Second, the number of 
optimal programs can also vary. Third, the total 
expenditure under the assumption of indivisibility 
never reaches the maximum budget. Fourth, 
apart from decision rule 1 (the traditional rule of 
cost-effectiveness), there is no simple algorithmic 
approach to deriving the optimal allocation for 
the other decision rules. In general, optimization 
software that incorporates integer linear 
programming is needed to replicate these results.
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Table 3. Summary of decision rules and optimal solutions

Programs (X denotes funded) QALY
lossRule Comment A B C D E F G H I J Expenditures QALYs

1 QALY maximization, 
divisible programs, 
constant return to scale

X 42% X X X X $900,000 18.94 N/A

2 QALY maximization, 
indivisible

X X X X X $894,000 17.10 0.00

3 QALY maximization, 
indivisible, at least 1 per 
region

X X X X X $860,000 13.80 3.30

4 QALY maximization, 
indivisible, at least 3 
youth programs

X X X X $890,000 14.70 2.40

5 Weighted QALY 
maximization, indivisible

X X X X X $889,000 16.60 0.50

6 QALY maximization, 
indivisible, interaction 
between A and B 
(gain 1 QALY and save 
$200,000)

X X X X X $820,000 17.50 N/A

Discussion 
Cost-effectiveness analysis is an important input 
into resource allocation decisions in many health 
contexts and systems, including, for example, 
public funding of drugs in Canada.11 However, 
cost-effectiveness analyses seem to be used 
less frequently for decision making at meso- or 
micro-levels, such as by regional authorities or 
by program managers.12 This limited uptake 
may be due to several reasons, including the lack 
of available data and accompanying analyses. 
However, it may also be because the decision rules 
of cost-effectiveness analyses, even when framed 
as health maximization within a constrained 
budget, are not optimal for such decision making. 
Two features of the conventional decision rules of 
cost-effectiveness are particularly important in this 
regard – the assumption of perfect divisibility of 
health care programs and the neglect of additional 
policy objectives beyond maximizing health.

Integer and mixed mathematical programming 
and constrained optimization methods have been 
proposed as solutions to the problem of divisibility 

of health care programs for over 20 years.4,5,13,14 
This approach has several strengths, most 
notably that it provides an optimal solution under 
conditions of indivisibility. Importantly, this optimal 
solution may be significantly different than the 
solution suggested by cost-effectiveness analysis. 
In addition, explicit consideration of additional 
objectives and constraints more accurately 
reflects the reported reality of many health care 
decisions. In addition to the constraints that we 
have illustrated, other applications have addressed 
issues such as workforce capacity and return to 
scale.15

While there is sufficient interest in constrained 
optimization within health to motivate a major 
academic society to convene a group to describe 
best practices in conducting such analyses, there 
are relatively few published applications.9,10 We 
believe that three reasons may explain this low 
uptake. First, both decision makers and analysts 
may be unfamiliar with the methods or software 
used for optimization, which has historically 
been used in operations research and industrial 
engineering much more frequently than in health 
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economics and health services research. Second, 
many funding decisions are made without 
consideration of how the investment fits within 
a constrained budget. For example, jurisdictions 
in Canada typically do not have fixed budgets 
for pharmaceuticals and do not evaluate the 
entire portfolio (the whole drug formulary) when 
deciding which drugs to list. Thus, an important, 
but likely under-appreciated, requirement for 
economic evaluation to be useful is that the 
method should be “fit to purpose” – that is, the 
optimal method depends on the decision problem 
under consideration. We believe that the methods 
of constrained optimization are a better fit for 
many decisions made by sub-national or regional 
decision makers. Third, the use of constrained 
optimization techniques may introduce new 
requirements for quantitative data or explicit 
decision making. In our examples, decision makers 
had to specify the number of youth services that 
were to be funded (Decision Rule 4) and the relative 
importance weights for QALYs for low, medium, 
and high priority programs (Decision Rule 5). Many 
advocate for measuring such weights to reflect 
societal preferences but measurement may be 
time-consuming or imprecise and may also be 
unfamiliar to decision makers, further limiting 
uptake.16

Real-world applications may be more complex 
than our straightforward and relatively simple 
examples. For example, additional analyses may 
be required to address the stochastic nature 
of input parameters (that is, the uncertainty in 
the constrained optimization model) as well 
as addressing sensitivity analyses regarding 
model structures.17,18 Additional methodological 
advances could address the dynamic nature 
of an optimization model in which inputs and 
parameters change over time, individuals move 
between programs, or where programs have more 
complex interdependencies than the relatively 
simple example we presented in Decision Rule 6. 

We have illustrated two ways that constrained 
optimization can incorporate equity concerns into 
economic evaluations. The first method (Decision 
Rule 3) illustrates how this method could be used 
to address horizontal equity by addressing the 

needs of individuals with similar levels of need but 
differential access.19 In our example, we assumed 
that the decision maker would want at least one 
program in each region. The second method 
illustrates how this method could be used to 
address vertical equity by prioritizing individuals 
with greater levels of need, illustrated as choice 
between youth and adults (Decision Rule 4) or 
by a prioritization exercise (Decision Rule 5).20,21 
Decision Rules 3 and 4 conceptualize equity as 
an additional constraint on the primary objective, 
which is efficiency (maximizing health). Decision 
Rule 5 conceptualizes equity as a component of 
the objective, alongside health and quality of life.22 
Similar considerations could consider issues such 
as the number of people affected by a program. 
Different methods to combine multiple objectives 
are also possible. For example, objectives could 
be linearly weighted and combined, they could be 
assigned priorities and optimized in order of the 
priorities, or some combination of methods. 

All resouce allocation decisions are ultimately 
political, rather than technical, problems. Hence, 
any technical solution will only be useful as far as 
it is able to quantify decision makers’ objectives 
and constraints and provide outputs that have face 
validity and are interpretable. In some situations, 
decision makers may not be able to express their 
concerns in quantitative terms; thus, constrained 
optimization solutions will incompletely 
characterize all of the important considerations. 
In other situations, constrained optimization may 
not find exact solutions to problems. In contrast 
to our examples, where an exact solution was 
always found, solving some problems may be 
impractical or impossible. In such situations, 
heuristic approaches can be used to provide a 
set of best-fitting approximate solutions. We also 
demonstrate the trade-off between efficacy and 
equity, in that equity-optimal solutions yield fewer 
QALYs than the most efficient solution – decision 
makers will need to decide what level of trade-off 
is acceptable. In this and indeed in all situations, 
including when constrained optimization yields 
exact solutions, decision makers will need to 
decide how to incorporate these results into their 
deliberations.



11
Converge3
August 2019

1 Drummond M, Brixner D, Gold M, et al. Toward a consensus on the QALY. Value Health. 2009;12 
 Suppl 1:S31-35.
2 Drummond MF, Sculpher MJ, Claxton K, Stoddart GL, Torrance GW. Methods for the economic 
 evaluation of health care programmes. Fourth ed. New York: Oxford University Press; 2015.
3 Epstein DM, Chalabi Z, Claxton K, Sculpher M. Efficiency, equity, and budgetary policies: informing 
 decisions using mathematical programming. Med Decis Making. 2007;27(2):128-137.
4 Stinnett AA, Paltiel AD. Mathematical programming for the efficient allocation of health care 
 resources. JHealth Econ. 1996;15(5):641-653.
5 Sendi P, Al MJ. Revisiting the decision rule of cost–effectiveness analysis under certainty and 
 uncertainty. Soc Sci Med. 2003;57(6):969-974.
6 Al MJ, Feenstra TL, Hout BA. Optimal allocation of resources over health care programmes: dealing 
 with decreasing marginal utility and uncertainty. Health Econ. 2005;14(7):655-667.
7 Woods B, Revill P, Sculpher M, Claxton K. Country-Level Cost-Effectiveness Thresholds: Initial 
 Estimates and the Need for Further Research. Value Health. 2016;19(8):929-935.
8 Grosse SD. Assessing cost-effectiveness in healthcare: history of the $50,000 per QALY threshold.  
 Expert Rev Pharmacoecon Outcomes Res. 2008;8(2):165-178.
9 Crown W, Buyukkaramikli N, Thokala P, et al. Constrained Optimization Methods in Health Services 
 Research-An Introduction: Report 1 of the ISPOR Optimization Methods Emerging Good Practices 
 Task Force. Value Health. 2017;20(3):310-319.
10 Crown W, Buyukkaramikli N, Sir MY, et al. Application of Constrained Optimization Methods in Health 
 Services Research: Report 2 of the ISPOR Optimization Methods Emerging Good Practices Task 
 Force. Value Health. 2018;21(9):1019-1028.
11 Rocchi A, Miller E, Hopkins RB, Goeree R. Common Drug Review recommendations: an evidence base 
 for expectations? Pharmacoeconomics. 2012;30(3):229-246.
12 Waithaka D, Tsofa B, Barasa E. Evaluating healthcare priority setting at the meso level: A thematic 
 review of empirical literature. Wellcome Open Res. 2018;3:2-2.
13 Earnshaw SR, Dennett SL. Integer/linear mathematical programming models: a tool for allocating 
 healthcare resources. Pharmacoeconomics. 2003;21(12):839-851.
14 Birch S, Gafni A. Cost effectiveness/utility analyses. Do current decision rules lead us to where we 
 want to be? J Health Econ. 1992;11(3):279-296.
15 van Baal P, Morton A, Severens JL. Health care input constraints and cost effectiveness analysis 
 decision rules. Soc Sci Med. 2018;200:59-64.
16 Bleichrodt H, Diecidue E, Quiggin J. Equity weights in the allocation of health care: the rank-dependent 
 QALY model. J Health Econ. 2004;23(1):157-171.
17 McKenna C, Chalabi Z, Epstein D, Claxton K. Budgetary policies and available actions: A generalisation 
 of decision rules for allocation and research decisions. J Health Econ. 2010;29(1):170-181.
18 Chalabi Z, Epstein D, McKenna C, Claxton K. Uncertainty and value of information when allocating 
 resources within and between healthcare programmes. Eur J Oper Res. 2008;191(2):530-539.
19 Culyer AJ. Equity - some theory and its policy implications. JMedEthics. 2001;27(4):275-283.
20 Soares MO. Is the QALY blind, deaf and dumb to equity? NICE’s considerations over equity. Br Med 
 Bull. 2012;101:17-31.
21 Mooney G. Vertical equity in health care resource allocation. Health Care Anal. 2000;8(3):203-215.
22 Morton A. Aversion to health inequalities in healthcare prioritisation: a multicriteria optimisation 
 perspective. J Health Econ. 2014;36:164-173.

References



12

Econom
ic Evaluation M

ethods for Allocating Resources w
ithin a 

Portfolio of Program
s w

ith Fixed Budgets and Additional Considerations

Optimization code

#maximize QALYs
from gurobipy import *

try:

    #Create a model object
    m = Model()

    # Create variables indicating whether a program is funded or not
    a = m.addVar(lb=0,ub=1,vtype=GRB.CONTINUOUS, name=”A”)
    b = m.addVar(lb=0,ub=1,vtype=GRB.CONTINUOUS, name=”B”)
    c = m.addVar(lb=0,ub=1,vtype=GRB.CONTINUOUS, name=”C”)
    d = m.addVar(lb=0,ub=1,vtype=GRB.CONTINUOUS, name=”D”)
    e = m.addVar(lb=0,ub=1,vtype=GRB.CONTINUOUS, name=”E”)
    f = m.addVar(lb=0,ub=1,vtype=GRB.CONTINUOUS, name=”F”)
    g = m.addVar(lb=0,ub=1,vtype=GRB.CONTINUOUS, name=”G”)
    h = m.addVar(lb=0,ub=1,vtype=GRB.CONTINUOUS, name=”H”)
    i = m.addVar(lb=0,ub=1,vtype=GRB.CONTINUOUS, name=”I”)
    j = m.addVar(lb=0,ub=1,vtype=GRB.CONTINUOUS, name=”J”)
    
    # QALYs, costs, priority
    ina=[3,   450000, 0]
    inb=[2,    85000, 2]
    inc=[6.3, 515000, 1]
    ind=[4.2, 145000, 0]
    ine=[1.3,  30000, 2]
    inf=[6,   310000, 1]
    ing=[2.1, 240000, 0]
    inh=[2.8, 114000, 2]
    ini=[4.5, 640000, 1]
    inj=[1.7, 321000, 0]

    Budget = 900000
    
    # DECISION RULE 1: maximize QALYs, divisible
    m.setObjective(a*ina[0]+b*inb[0]+c*inc[0]+d*ind[0]+e*ine[0]+f*in-
f[0]+g*ing[0]+h*inh[0]+i*ini[0]+j*inj[0] , GRB.MAXIMIZE)
 
    # Add budget constraint: 
    c1=m.addConstr(a*ina[1]+b*inb[1]+c*inc[1]+d*ind[1]+e*ine[1]+f*in-
f[1]+g*ing[1]+h*inh[1]+i*ini[1]+j*inj[1]<=Budget,name=”budget”)

 # Optimize
    m.optimize()
 # Calculate actual budget
    budget=quicksum([a.X*ina[1], b.X*inb[1],  c.X*inc[1], 
               d.X*ind[1],  e.X*ine[1], f.X*inf[1],  g.X*ing[1],  
h.X*inh[1],  i.X*ini[1],  j.X*inj[1] ])
    for v in m.getVars():
        if v.x!=0:
            print(v.varName, v.x)
        
    print(‘Maximum QALYs:’, m.objVal)
    print(“Budget”,budget.getValue())
 # DECISION RULE 2: recast variables to be binary

Appendix
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    for v in m.getVars():
        v.setAttr(“Vtype”,GRB.BINARY)

 # reset and rerun
    m.reset(0)
    m.optimize()
    budget=quicksum([a.X*ina[1], b.X*inb[1],  c.X*inc[1], 
               d.X*ind[1],  e.X*ine[1], f.X*inf[1],  g.X*ing[1],  
h.X*inh[1],  i.X*ini[1],  j.X*inj[1] ])
    for v in m.getVars():
        if v.x!=0:
            print(v.varName, v.x)
        
    print(‘Maximum QALYs:’, m.objVal)
    print(“Budget”,budget.getValue())

 
 # DECISION RULE 2: regions (horizontal equity)
    #regions
    reg1=a+b
    reg2=c+d+e
    reg3=f
    reg4=g+h
    reg5=i+j

    r1= m.addConstr(reg1>=1)
    r2=m.addConstr(reg2>=1)
    r3=m.addConstr(reg3>=1)
    r4=m.addConstr(reg4>=1)
    r5=m.addConstr(reg5>=1)

    m.reset(0)
    m.optimize()
    budget=quicksum([a.X*ina[1], b.X*inb[1],  c.X*inc[1], 
               d.X*ind[1],  e.X*ine[1], f.X*inf[1],  g.X*ing[1],  
h.X*inh[1],  i.X*ini[1],  j.X*inj[1] ])
    for v in m.getVars():
        if v.x!=0:
            print(v.varName, v.x)
    print(‘Maximum QALYs:’, m.objVal)
    print(“Budget”,budget.getValue())

 # DECISION RULE 4: Youth
    m.remove(r1)
    m.remove(r2)
    m.remove(r3)
    m.remove(r4)
    m.remove(r5)

    #youth
    youth=a+d+h+i+j
    y1=m.addConstr(youth>=3)
    m.reset(0)
    m.optimize()
    budget=quicksum([a.X*ina[1], b.X*inb[1],  c.X*inc[1], 
               d.X*ind[1],  e.X*ine[1], f.X*inf[1],  g.X*ing[1],  
h.X*inh[1],  i.X*ini[1],  j.X*inj[1] ])
    for v in m.getVars():
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        if v.x!=0:
            print(v.varName, v.x)
    print(‘Maximum QALYs:’, m.objVal)
    print(“Budget”,budget.getValue())
    m.remove(y1)
 
 # DECISION RULE 5: WEIGHTED QALYs
    w=[1,1.2,1.6]
    
    m.setObjective(a*ina[0]*w[ina[2]]
                   +b*inb[0]*w[inb[2]]
                   +c*inc[0]*w[inc[2]]
                   +d*ind[0]*w[ind[2]]
                   +e*ine[0]*w[ine[2]]
                   +f*inf[0]*w[inf[2]]
                   +g*ing[0]*w[ing[2]]
                   +h*inh[0]*w[inh[2]]
                   +i*ini[0]*w[ini[2]]
                   +j*inj[0]*w[inj[2]]
                   , GRB.MAXIMIZE)
    m.reset(0)
    m.optimize()
    budget=quicksum([a.X*ina[1], b.X*inb[1],  c.X*inc[1], 
d.X*ind[1],  e.X*ine[1], f.X*inf[1],  g.X*ing[1],  h.X*inh[1],  i.X*ini[1],  
j.X*inj[1] ])
    
    u=quicksum([a.x*ina[0],b.x*inb[0],c.x*inc[0],
d.X*ind[0],  e.X*ine[0], f.X*inf[0],  g.X*ing[0],  h.X*inh[0],  i.X*ini[0],  
j.X*inj[0] ])
    
    for v in m.getVars():
        if v.x!=0:
            print(v.varName, v.x)

    print(‘Maximum QALYs:’, m.objVal)
    print(“Budget”,budget.getValue())
    print(“Unweighted QALYs”,u.getValue())
    
 # DECISION RULE 6: RELAX DEPENDENCE ASSMPTION
    interactq=1
    interactc=-200000
    m.setObjective(a*ina[0]+b*inb[0]+c*inc[0]+d*ind[0]+e*ine[0]+f*in-
f[0]+g*ing[0]+h*inh[0]+i*ini[0]+j*inj[0] + a*b*interactq , GRB.MAXIMIZE)
  
m.remove(c1)
    c1=m.addConstr(a*ina[1]+b*inb[1]+c*inc[1]+d*ind[1]+e*ine[1]+f*in-
f[1]+g*ing[1]+h*inh[1]+i*ini[1]+j*inj[1]+a*b*interactc<=Budget,name=”bud-
get”)

m.reset(0)
m.optimize()
budget=quicksum([a.X*ina[1], b.X*inb[1],  c.X*inc[1], 
d.X*ind[1],  e.X*ine[1], f.X*inf[1],  g.X*ing[1],  h.X*inh[1],  i.X*ini[1],  
j.X*inj[1] , a*b*interactc])
    
    for v in m.getVars():
        if v.x!=0:
            print(v.varName, v.x)
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    print(‘Maximum QALYs:’, m.objVal)
    print(“Budget”,budget.getValue())

except GurobiError:
    print(‘Error reported’)

Program output

Python 3.7.2 (v3.7.2:9a3ffc0492, Dec 24 2018, 02:44:43) 
[Clang 6.0 (clang-600.0.57)] on darwin
Type “help”, “copyright”, “credits” or “license()” for more information.
>>> 
============= RESTART: /Users/ahmedbayoumi/Dropbox/converge3.py 
=============
Academic license - for non-commercial use only
Optimize a model with 1 rows, 10 columns and 10 nonzeros
Coefficient statistics:
  Matrix range     [3e+04, 6e+05]
  Objective range  [1e+00, 6e+00]
  Bounds range     [1e+00, 1e+00]
  RHS range        [9e+05, 9e+05]
Presolve time: 0.10s
Presolved: 1 rows, 10 columns, 10 nonzeros

Iteration    Objective       Primal Inf.    Dual Inf.      Time
       0    3.9000000e+01   4.640000e+02   0.000000e+00      0s
       1    1.8942330e+01   0.000000e+00   0.000000e+00      0s

Solved in 1 iterations and 0.20 seconds
Optimal objective  1.894233010e+01
B 1.0
C 0.41941747572815535
D 1.0
E 1.0
F 1.0
H 1.0
Maximum QALYs: 18.942330097087382
Budget 900000.0
Optimize a model with 1 rows, 10 columns and 10 nonzeros
Variable types: 0 continuous, 10 integer (10 binary)
Coefficient statistics:
  Matrix range     [3e+04, 6e+05]
  Objective range  [1e+00, 6e+00]
  Bounds range     [1e+00, 1e+00]
  RHS range        [9e+05, 9e+05]
Found heuristic solution: objective 13.3000000
Presolve removed 0 rows and 1 columns
Presolve time: 0.00s
Presolved: 1 rows, 9 columns, 9 nonzeros
Variable types: 0 continuous, 9 integer (9 binary)

Root relaxation: objective 1.886893e+01, 1 iterations, 0.00 seconds

    Nodes    |    Current Node    |     Objective Bounds      |     Work
 Expl Unexpl |  Obj  Depth IntInf | Incumbent    BestBd   Gap | It/Node 
Time

     0     0   18.86893    0    1   13.30000   18.86893  41.9%     -    0s
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H    0     0                      16.6000000   18.86893  13.7%     -    0s
H    0     0                      17.1000000   18.86893  10.3%     -    0s
     0     0 infeasible    0        17.10000   17.10000  0.00%     -    0s

Explored 1 nodes (1 simplex iterations) in 0.59 seconds
Thread count was 4 (of 4 available processors)

Solution count 3: 17.1 16.6 13.3 

Optimal solution found (tolerance 1.00e-04)
Best objective 1.710000000000e+01, best bound 1.710000000000e+01, gap 
0.0000%
B 1.0
D 1.0
F 1.0
G 1.0
H 1.0
Maximum QALYs: 17.099999999999998
Budget 894000.0
Optimize a model with 6 rows, 10 columns and 20 nonzeros
Variable types: 0 continuous, 10 integer (10 binary)
Coefficient statistics:
  Matrix range     [1e+00, 6e+05]
  Objective range  [1e+00, 6e+00]
  Bounds range     [1e+00, 1e+00]
  RHS range        [1e+00, 9e+05]
Presolve removed 6 rows and 10 columns
Presolve time: 0.00s
Presolve: All rows and columns removed

Explored 0 nodes (0 simplex iterations) in 0.33 seconds
Thread count was 1 (of 4 available processors)

Solution count 1: 13.8 

Optimal solution found (tolerance 1.00e-04)
Best objective 1.380000000000e+01, best bound 1.380000000000e+01, gap 
0.0000%
B 1.0
E 1.0
F 1.0
H 1.0
J 1.0
Maximum QALYs: 13.8
Budget 860000.0
Optimize a model with 2 rows, 10 columns and 15 nonzeros
Variable types: 0 continuous, 10 integer (10 binary)
Coefficient statistics:
  Matrix range     [1e+00, 6e+05]
  Objective range  [1e+00, 6e+00]
  Bounds range     [1e+00, 1e+00]
  RHS range        [3e+00, 9e+05]
Presolve removed 0 rows and 1 columns
Presolve time: 0.00s
Presolved: 2 rows, 9 columns, 14 nonzeros
Variable types: 0 continuous, 9 integer (9 binary)
Found heuristic solution: objective 14.7000000
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Root relaxation: objective 1.583544e+01, 2 iterations, 0.00 seconds

    Nodes    |    Current Node    |     Objective Bounds      |     Work
 Expl Unexpl |  Obj  Depth IntInf | Incumbent    BestBd   Gap | It/Node 
Time

     0     0 infeasible    0        14.70000   14.70000  0.00%     -    0s

Explored 0 nodes (2 simplex iterations) in 0.64 seconds
Thread count was 4 (of 4 available processors)

Solution count 1: 14.7 

Optimal solution found (tolerance 1.00e-04)
Best objective 1.470000000000e+01, best bound 1.470000000000e+01, gap 
0.0000%
D 1.0
F 1.0
H 1.0
J 1.0
Maximum QALYs: 14.7
Budget 890000.0
Optimize a model with 1 rows, 10 columns and 10 nonzeros
Variable types: 0 continuous, 10 integer (10 binary)
Coefficient statistics:
  Matrix range     [3e+04, 6e+05]
  Objective range  [2e+00, 8e+00]
  Bounds range     [1e+00, 1e+00]
  RHS range        [9e+05, 9e+05]
Found heuristic solution: objective 16.9600000
Presolve removed 0 rows and 1 columns
Presolve time: 0.00s
Presolved: 1 rows, 9 columns, 9 nonzeros
Variable types: 0 continuous, 9 integer (9 binary)

Root relaxation: objective 2.424272e+01, 1 iterations, 0.00 seconds

    Nodes    |    Current Node    |     Objective Bounds      |     Work
 Expl Unexpl |  Obj  Depth IntInf | Incumbent    BestBd   Gap | It/Node 
Time

     0     0   24.24272    0    1   16.96000   24.24272  42.9%     -    0s
H    0     0                      21.5200000   24.24272  12.7%     -    0s
     0     0     cutoff    0        21.52000   21.52000  0.00%     -    0s
Cutting planes:
  Cover: 1

Explored 1 nodes (2 simplex iterations) in 0.80 seconds
Thread count was 4 (of 4 available processors)

Solution count 2: 21.52 16.96 

Optimal solution found (tolerance 1.00e-04)
Best objective 2.152000000000e+01, best bound 2.152000000000e+01, gap 
0.0000%
B 1.0
C 1.0
D 1.0
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E 1.0
H 1.0
Maximum QALYs: 21.52
Budget 889000.0
Unweighted QALYs 16.6
Optimize a model with 0 rows, 10 columns and 0 nonzeros
Model has 1 quadratic objective term
Model has 1 quadratic constraint
Variable types: 0 continuous, 10 integer (10 binary)
Coefficient statistics:
  Matrix range     [0e+00, 0e+00]
  QMatrix range    [2e+05, 2e+05]
  QLMatrix range   [3e+04, 6e+05]
  Objective range  [1e+00, 6e+00]
  QObjective range [2e+00, 2e+00]
  Bounds range     [1e+00, 1e+00]
  RHS range        [0e+00, 0e+00]
  QRHS range       [9e+05, 9e+05]
Found heuristic solution: objective -0.0000000
Presolve time: 0.00s
Presolved: 0 rows, 10 columns, 0 nonzeros
Presolved model has 3 quadratic objective terms
Variable types: 0 continuous, 10 integer (10 binary)

Root relaxation: objective 3.490000e+01, 11 iterations, 0.00 seconds

    Nodes    |    Current Node    |     Objective Bounds      |     Work
 Expl Unexpl |  Obj  Depth IntInf | Incumbent    BestBd   Gap | It/Node 
Time

     0     0   20.11609    0    2   -0.00000   20.11609      -     -    0s
H    0     0                      17.5000000   20.11609  14.9%     -    0s
     0     0   19.06811    0    3   17.50000   19.06811  8.96%     -    0s
     0     0   18.92544    0    4   17.50000   18.92544  8.15%     -    0s
     0     0   18.29520    0    3   17.50000   18.29520  4.54%     -    0s
     0     0   18.07500    0    3   17.50000   18.07500  3.29%     -    1s
     0     0     cutoff    0        17.50000   17.50000  0.00%     -    1s

Cutting planes:
  MIR: 2
  StrongCG: 1

Explored 1 nodes (46 simplex iterations) in 1.21 seconds
Thread count was 4 (of 4 available processors)
Solution count 2: 17.5 -0 

Optimal solution found (tolerance 1.00e-04)
Best objective 1.750000000000e+01, best bound 1.750000000000e+01, gap 
0.0000%
A 1.0
B 1.0
D 1.0
E 1.0
F 1.0
Maximum QALYs: 17.5
Budget 820000.0
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